Objective: Thigh muscle group segmentation is important for assessment of muscle anatomy, metabolic disease and aging. Many efforts have been put into quantifying muscle tissues with magnetic resonance (MR) imaging including manual annotation of individual muscles. However, leveraging publicly available annotations in MR images to achieve muscle group segmentation on single slice computed tomography (CT) thigh images is challenging. Method: We propose an unsupervised domain adaptation pipeline with self-training to transfer labels from 3D MR to single CT slice. First, we transform the image appearance from MR to CT with CycleGAN and feed the synthesized CT images to a segmenter simultaneously. Single CT slices are divided into hard and easy cohorts based on the entropy of pseudo labels inferenced by the segmenter. After refining easy cohort pseudo labels based on anatomical assumption, self-training with easy and hard splits is applied to fine tune the segmenter. Results: On 152 withheld single CT thigh images, the proposed pipeline achieved a mean Dice of 0.888(0.041) across all muscle groups including sartorius, hamstrings, quadriceps femoris and gracilis. muscles Conclusion: To our best knowledge, this is the first pipeline to achieve thigh imaging domain adaptation from MR to CT. The proposed pipeline is effective and robust in extracting muscle groups on 2D single slice CT thigh images.The container is available for public use at https://github.com/MASILab/DA_CT_muscle_seg
translated by 谷歌翻译
从单个放射学图像中学到的功能无法提供有关随着时间的流逝可能发生的病变以及多少变化的信息。从重复图像计算出的时间相关特征可以捕获这些变化,并通过其时间行为来识别恶性病变。但是,纵向医学成像提出了数据获取的稀疏,不规则时间间隔的独特挑战。虽然自我注意事项已被证明是时间序列和自然图像的一种多功能,有效的学习机制,但尚未探索其在稀疏,不规则采样的空​​间特征之间解释时间距离的潜力。在这项工作中,我们通过使用(1)连续时间的矢量嵌入和(2)时间强调自我注意力的权重来提出两种解释时间距离视觉变压器(VIT)。这两种算法是根据合成肺结节的良性与恶性肺癌区分和肺筛查计算机断层扫描研究(NLST)评估的。与标准VIT相比,评估合成结节的时间段VIT的实验表明,在对不规则采样的纵向图像进行分类方面有了基本改进。在从NLST筛选胸部CTS的交叉验证中,我们的方法(分别为0.785和0.786 AUC)显着超过了横截面方法(0.734 AUC)(0.734 AUC),并匹配领先的纵向医学成像算法(0.779 AUC)在良好的良性上的判别性能与恶性分类。这项工作代表了第一个基于自我注意的框架,用于对纵向医学图像进行分类。我们的代码可从https://github.com/tom1193/time-distance-transformer获得。
translated by 谷歌翻译
肺部以外的视野(FOV)组织截断在常规的肺筛查计算机断层扫描(CT)中很常见。这对机会性CT的身体组成(BC)评估构成了局限性,因为缺少关键的解剖结构。传统上,扩展CT的FOV被认为是使用有限数据的CT重建问题。但是,这种方法依赖于应用程序中可能无法使用的投影域数据。在这项工作中,我们从语义图像扩展角度提出问题,该角度仅需要图像数据作为输入。提出的两阶段方法根据完整体的估计范围识别新的FOV边框,并在截短区域中渗出了缺失的组织。使用在FOV中具有完整主体的CT切片对训练样品进行模拟,从而使模型开发自制。我们使用有限FOV的肺筛选CT评估了所提出的方法在自动BC评估中的有效性。提出的方法有效地恢复了缺失的组织并减少了FOV组织截断引入的BC评估误差。在大规模肺部筛查CT数据集的BC评估中,这种校正既可以提高受试者内的一致性和与人体测量近似值的相关性。已开发的方法可在https://github.com/masilab/s-efov上获得。
translated by 谷歌翻译
We present a neural flow wavefunction, Gauge-Fermion FlowNet, and use it to simulate 2+1D lattice compact quantum electrodynamics with finite density dynamical fermions. The gauge field is represented by a neural network which parameterizes a discretized flow-based transformation of the amplitude while the fermionic sign structure is represented by a neural net backflow. This approach directly represents the $U(1)$ degree of freedom without any truncation, obeys Guass's law by construction, samples autoregressively avoiding any equilibration time, and variationally simulates Gauge-Fermion systems with sign problems accurately. In this model, we investigate confinement and string breaking phenomena in different fermion density and hopping regimes. We study the phase transition from the charge crystal phase to the vacuum phase at zero density, and observe the phase seperation and the net charge penetration blocking effect under magnetic interaction at finite density. In addition, we investigate a magnetic phase transition due to the competition effect between the kinetic energy of fermions and the magnetic energy of the gauge field. With our method, we further note potential differences on the order of the phase transitions between a continuous $U(1)$ system and one with finite truncation. Our state-of-the-art neural network approach opens up new possibilities to study different gauge theories coupled to dynamical matter in higher dimensions.
translated by 谷歌翻译
Most multimodal multi-objective evolutionary algorithms (MMEAs) aim to find all global Pareto optimal sets (PSs) for a multimodal multi-objective optimization problem (MMOP). However, in real-world problems, decision makers (DMs) may be also interested in local PSs. Also, searching for both global and local PSs is more general in view of dealing with MMOPs, which can be seen as a generalized MMOP. In addition, the state-of-the-art MMEAs exhibit poor convergence on high-dimension MMOPs. To address the above two issues, in this study, a novel coevolutionary framework termed CoMMEA for multimodal multi-objective optimization is proposed to better obtain both global and local PSs, and simultaneously, to improve the convergence performance in dealing with high-dimension MMOPs. Specifically, the CoMMEA introduces two archives to the search process, and coevolves them simultaneously through effective knowledge transfer. The convergence archive assists the CoMMEA to quickly approaching the Pareto optimal front (PF). The knowledge of the converged solutions is then transferred to the diversity archive which utilizes the local convergence indicator and the $\epsilon$-dominance-based method to obtain global and local PSs effectively. Experimental results show that CoMMEA is competitive compared to seven state-of-the-art MMEAs on fifty-four complex MMOPs.
translated by 谷歌翻译
Multi-modal robots expand their operations from one working media to another, land to air for example. The majorities multi-modal robots mainly refer to platforms that operate in two different media. However, for all-terrain tasks, there is seldom research to date in the literature. In this paper, we proposed a triphibian robotic platform aiming at solving the challenges of different propulsion systems and immensely varied working media. In our design, three ducted fans are adopted to unify the propulsion system and provide the robot with driving forces to perform all-terrain operations. A morphable mechanism is designed to enable the transition between different motion modes, and specifically, a cylindrical body is implemented as the rolling mechanism in land mode. Detailed design principles of different mechanisms and the transition between various locomotion modes are analyzed in detail. Finally, a triphibian robot prototype is fabricated and tested in various working media with mono-modal and multi-modal functionalities. Experiments have verified our platform, and the results show promising adaptions for future exploration tasks in different working scenarios.
translated by 谷歌翻译
Link prediction is a crucial problem in graph-structured data. Due to the recent success of graph neural networks (GNNs), a variety of GNN-based models were proposed to tackle the link prediction task. Specifically, GNNs leverage the message passing paradigm to obtain node representation, which relies on link connectivity. However, in a link prediction task, links in the training set are always present while ones in the testing set are not yet formed, resulting in a discrepancy of the connectivity pattern and bias of the learned representation. It leads to a problem of dataset shift which degrades the model performance. In this paper, we first identify the dataset shift problem in the link prediction task and provide theoretical analyses on how existing link prediction methods are vulnerable to it. We then propose FakeEdge, a model-agnostic technique, to address the problem by mitigating the graph topological gap between training and testing sets. Extensive experiments demonstrate the applicability and superiority of FakeEdge on multiple datasets across various domains.
translated by 谷歌翻译
Federated embodied agent learning protects the data privacy of individual visual environments by keeping data locally at each client (the individual environment) during training. However, since the local data is inaccessible to the server under federated learning, attackers may easily poison the training data of the local client to build a backdoor in the agent without notice. Deploying such an agent raises the risk of potential harm to humans, as the attackers may easily navigate and control the agent as they wish via the backdoor. Towards Byzantine-robust federated embodied agent learning, in this paper, we study the attack and defense for the task of vision-and-language navigation (VLN), where the agent is required to follow natural language instructions to navigate indoor environments. First, we introduce a simple but effective attack strategy, Navigation as Wish (NAW), in which the malicious client manipulates local trajectory data to implant a backdoor into the global model. Results on two VLN datasets (R2R and RxR) show that NAW can easily navigate the deployed VLN agent regardless of the language instruction, without affecting its performance on normal test sets. Then, we propose a new Prompt-Based Aggregation (PBA) to defend against the NAW attack in federated VLN, which provides the server with a ''prompt'' of the vision-and-language alignment variance between the benign and malicious clients so that they can be distinguished during training. We validate the effectiveness of the PBA method on protecting the global model from the NAW attack, which outperforms other state-of-the-art defense methods by a large margin in the defense metrics on R2R and RxR.
translated by 谷歌翻译
Various forms of regularization in learning tasks strive for different notions of simplicity. This paper presents a spectral regularization technique, which attaches a unique inductive bias to sequence modeling based on an intuitive concept of simplicity defined in the Chomsky hierarchy. From fundamental connections between Hankel matrices and regular grammars, we propose to use the trace norm of the Hankel matrix, the tightest convex relaxation of its rank, as the spectral regularizer. To cope with the fact that the Hankel matrix is bi-infinite, we propose an unbiased stochastic estimator for its trace norm. Ultimately, we demonstrate experimental results on Tomita grammars, which exhibit the potential benefits of spectral regularization and validate the proposed stochastic estimator.
translated by 谷歌翻译
Implementing fully automatic unmanned surface vehicles (USVs) monitoring water quality is challenging since effectively collecting environmental data while keeping the platform stable and environmental-friendly is hard to approach. To address this problem, we construct a USV that can automatically navigate an efficient path to sample water quality parameters in order to monitor the aquatic environment. The detection device needs to be stable enough to resist a hostile environment or climates while enormous volumes will disturb the aquaculture environment. Meanwhile, planning an efficient path for information collecting needs to deal with the contradiction between the restriction of energy and the amount of information in the coverage region. To tackle with mentioned challenges, we provide a USV platform that can perfectly balance mobility, stability, and portability attributed to its special round-shape structure and redundancy motion design. For informative planning, we combined the TSP and CPP algorithms to construct an optimistic plan for collecting more data within a certain range and limiting energy restrictions.We designed a fish existence prediction scenario to verify the novel system in both simulation experiments and field experiments. The novel aquaculture environment monitoring system significantly reduces the burden of manual operation in the fishery inspection field. Additionally, the simplicity of the sensor setup and the minimal cost of the platform enables its other possible applications in aquatic exploration and commercial utilization.
translated by 谷歌翻译